eds_scikit.event.from_code
event_from_code
event_from_code(df: DataFrame, columns: Dict[str, str], visit_occurrence: Optional[DataFrame] = None, concept: str = 'ICD10', codes: Optional[Dict[str, Union[str, List[str]]]] = None, date_from_visit: bool = True, additional_filtering: Dict[str, Any] = dict(), date_min: Optional[datetime] = None, date_max: Optional[datetime] = None) -> DataFrame
Generic function to filter a DataFrame based on one of its column and an ensemble of codes to select from.
For instance, this function is called when phenotyping via ICD-10 or CCAM.
PARAMETER | DESCRIPTION |
---|---|
df |
The DataFrame to filter.
TYPE:
|
columns |
Dictionary with the following keys:
TYPE:
|
visit_occurrence |
The
TYPE:
|
concept |
The name of the extracted concept
TYPE:
|
codes |
Dictionary which values are codes (as a unique string or as a list) and which keys are at least one of the following:
TYPE:
|
date_from_visit |
If set to
TYPE:
|
additional_filtering |
An optional dictionary to filter the resulting DataFrame. Keys should be column names on which too filter, and values should be either
TYPE:
|
date_min |
The minimum code datetime to keep. Depends on the
TYPE:
|
date_max |
The minimum code datetime to keep. Depends on the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
DataFrame
|
A DataFrame containing especially the following columns:
|
Source code in eds_scikit/event/from_code.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|