eds_scikit.event.diabetes
DEFAULT_DIABETE_FROM_ICD10_CONFIG
module-attribute
DEFAULT_DIABETE_FROM_ICD10_CONFIG = dict(codes=dict(DIABETES_TYPE_I=dict(prefix='E10'), DIABETES_TYPE_II=dict(prefix='E11'), DIABETES_MALNUTRITION=dict(prefix='E12'), DIABETES_IN_PREGNANCY=dict(prefix='O24'), OTHER_DIABETES_MELLITUS=dict(prefix=['E13', 'E14']), DIABETES_INSIPIDUS=dict(exact=['E232', 'N251'])), date_from_visit=True, additional_filtering=dict(condition_status_source_value={'DP', 'DAS'}))
Default parameters feeded to conditions_from_icd10()
diabetes_from_icd10
diabetes_from_icd10(condition_occurrence: DataFrame, visit_occurrence: DataFrame, date_min: Optional[datetime] = None, date_max: Optional[datetime] = None, codes: Dict[str, Union[str, List[str]]] = DEFAULT_DIABETE_FROM_ICD10_CONFIG['codes'], date_from_visit: bool = DEFAULT_DIABETE_FROM_ICD10_CONFIG['date_from_visit'], additional_filtering: Dict[str, Any] = DEFAULT_DIABETE_FROM_ICD10_CONFIG['additional_filtering']) -> DataFrame
Wrapper around the conditions_from_icd10() function. Check the default configuration to see the used parameters
PARAMETER | DESCRIPTION |
---|---|
condition_occurrence |
OMOP-like condition occurrence DataFrame
TYPE:
|
visit_occurrence |
OMOP-like visit_occurrence DataFrame
TYPE:
|
date_min |
Lower temporal bound
TYPE:
|
date_max |
Upper temporal bound
TYPE:
|
codes |
Dictionary of ICD-10 used for phenotyping
TYPE:
|
date_from_visit |
If true, use the
TYPE:
|
additional_filtering |
A dictionary to perform additional filtering.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
DataFrame
|
Event DataFrame in long format (with a
|
Source code in eds_scikit/event/diabetes.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
|