eds_scikit.event.consultations
get_consultation_dates
get_consultation_dates(vo: DataFrame, note: DataFrame, note_nlp: Optional[DataFrame] = None, algo: Union[str, List[str]] = ['nlp'], max_timedelta: timedelta = timedelta(days=7), structured_config: Dict[str, Any] = dict(), nlp_config: Dict[str, Any] = dict()) -> DataFrame
Extract consultation dates. See the implementation details of the algo(s) you want to use
PARAMETER | DESCRIPTION |
---|---|
vo |
TYPE:
|
note |
TYPE:
|
note_nlp |
TYPE:
|
algo |
Algorithm(s) to use to determine consultation dates. Multiple algorithms can be provided as a list. Accepted values are:
TYPE:
|
max_timedelta |
If two extracted consultations are spaced by less than
TYPE:
|
structured_config |
A dictionnary of parameters when using the
TYPE:
|
nlp_config |
A dictionnary of parameters when using the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
DataFrame
|
Event type DataFrame with the following columns:
|
Source code in eds_scikit/event/consultations.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
get_consultation_dates_structured
get_consultation_dates_structured(note: DataFrame, vo: Optional[DataFrame] = None, kept_note_class_source_value: Optional[Union[str, List[str]]] = 'CR-CONS', kept_visit_source_value: Optional[Union[str, List[str]]] = 'consultation externe') -> DataFrame
Uses note_datetime
value to infer true consultation dates
PARAMETER | DESCRIPTION |
---|---|
note |
A
TYPE:
|
vo |
A visit_occurrence DataFrame to provide if
TYPE:
|
kept_note_class_source_value |
Value(s) allowed for the
TYPE:
|
kept_visit_source_value |
Value(s) allowed for the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Dataframe
|
With 2 added columns corresponding to the following concept:
|
Source code in eds_scikit/event/consultations.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
get_consultation_dates_nlp
get_consultation_dates_nlp(note_nlp: DataFrame, dates_to_keep: str = 'min') -> DataFrame
Uses consultation dates extracted a priori in consultation reports to infer true consultation dates
PARAMETER | DESCRIPTION |
---|---|
note_nlp |
A DataFrame with (at least) the following columns:
TYPE:
|
dates_to_keep |
How to handle multiple consultation dates found in the document:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Dataframe
|
With 2 added columns corresponding to the following concept:
|
Source code in eds_scikit/event/consultations.py
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
|