Diabetes
Presentation
We provide the DiabetesFromICD10 class to extract visits or patients with ICD10 codes related to diabetes
Available diabetes types
- DIABETES_IN_PREGNANCY
- DIABETES_MALNUTRITION
- DIABETES_TYPE_I
- DIABETES_TYPE_II
- OTHER_DIABETES_MELLITUS
How it works
The algorithm works by looking for either DP, DR or DAS ICD10 codes associated with cancer.
Those codes are available under DiabetesFromICD10.ICD10_CODES
Usage
By default, all diabetes types mentionned above are extracted
from eds_scikit.io import HiveData
data = HiveData(DBNAME)
from eds_scikit.phenotype import DiabetesFromICD10
diabetes = DiabetesFromICD10(data)
data = diabetes.to_data()
To choose a subset of disorders, use the diabetes_types
argument:
diabetes = DiabetesFromICD10(
data,
diabetes_types=[
"DIABETES_TYPE_I",
"DIABETES_IN_PREGNANCY",
],
)
The final phenotype DataFrame is then available at data.computed["DiabetesFromICD10"]
Optional parameters
PARAMETER | DESCRIPTION |
---|---|
data |
A BaseData object
TYPE:
|
diabetes_types |
Optional list of diabetes types to use for phenotyping
TYPE:
|
level |
On which level to do the aggregation, either "patient" or "visit"
TYPE:
|
subphenotype |
Whether the threshold should apply to the phenotype ("phenotype" column) of the subphenotype ("subphenotype" column)
TYPE:
|
threshold |
Minimal number of events (which definition depends on the
TYPE:
|
Reference
Check the code reference here for a more detailled look.